Motor regulation results in distal forces that bend partially disintegrated Chlamydomonas axonemes into circular arcs.

نویسندگان

  • V Mukundan
  • P Sartori
  • V F Geyer
  • F Jülicher
  • J Howard
چکیده

The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscillatory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. During experimentation with axonemes subjected to mild proteolysis, we observed pairs of doublets associating with each other and forming bends with almost constant curvature. By modeling the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis, provide evidence that dynein activity can be regulated by curvature or normal forces, which may, therefore, play a role in coordinating the beating of cilia and flagella.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beat regulation in twisted axonemes

Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme, the motile structure inside cilia and flagella, is powered by molecular motors of the dynein family. These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To create regular waveforms the activities of the dyneins must be coordinated. I...

متن کامل

Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm.

Axonemes isolated from the sperm of the sea urchin, Tripneustes gratilla, were briefly digested with trypsin. The digested axonemes retained their typical structure of a cylinder of nine doublet-tubules surrounding a pair of single tubules. The digestion modified the axonemes so that the subsequent addition of 0.1 mM ATP caused them to disintegrate actively into individual tubules and groups. T...

متن کامل

Assembly of chick brain tubulin onto flagellar microtubules from Chlamydomonas and sea urchin sperm.

Flagellar microtubules from Chlamydomonas and sea urchin sperm were used as in vitro assembly sites for chick brain tubulin. Brain microtubules assembled onto the A-tubules, central tubules, and, to a limited extent, onto the distal ends of the axonemes at low tubulin concentrations and onto distal and proximal ends at high tubulin concentrations; however, the rate of assembly onto the distal e...

متن کامل

Mechanism of flagellar oscillation-bending-induced switching of dynein activity in elastase-treated axonemes of sea urchin sperm.

Oscillatory movement of eukaryotic flagella is caused by dynein-driven microtubule sliding in the axoneme. The mechanical feedback from the bending itself is involved in the regulation of dynein activity, the main mechanism of which is thought to be switching of the activity of dynein between the two sides of the central pair microtubules. To test this, we developed an experimental system using...

متن کامل

Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas

When detergent-extracted, demembranated cell models of Chlamydomonas were resuspended in reactivation solutions containing less than 10(-8) M Ca++, many models initially swam in helical paths similar to those of intact cells; others swam in circles against the surface of the slide or coverslip. With increasing time after reactivation, fewer models swam in helices and more swam in circles. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 106 11  شماره 

صفحات  -

تاریخ انتشار 2014